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This paper summarizes my work as an intern at Fermi National Accelerator Laboratory over the summer.

I worked in multiple different areas, so the paper does not flow naturally from section to section; the transitions 

are rather rough. Nonetheless, a lot of the work is concerned with validating Geant4 processes, especially in 

liquid Argon time projection chambers. This may be of interest to many of the current and future experiments 

that use liquid argon TPCs, ie. LArIAT, DUNE, etc. The specific process we looked at were hadronic cross 

sections of pions, kaons, and nucleons in liquid Argon, the shape of electromagnetic showers, and separation of 

muons and pions by charge in the absence of an electric and magnetic field.

We were also interested in how detectors are simulated by programs such as LArSoft and LArG4. After 

the event is generated by Geant4, the energy deposited in the detector is collected and turned into data for 

electron drift and scintillation photons. It is easy to misinterpret Geant4: Geant4 steps only when something 

interesting happens. For example, if a high energy muon enters the TPC and goes straight through, only ionizing 

the argon to leave a trail, Geant4 will take one big step throughout the detector and return the total energy 

deposited everywhere on the track. If you associate all that energy with one point, the interpretation will be 

incorrect. There are a couple ways to match the step length to the readout pitch: using a step limiter, dividing the 

total energy along the path, or using a segmented/voxelized geometry. Currently, LarSoft uses a voxelized 

geometry, but after our studies (p. 5-9), we concluded that it would be best to switch to using the step limiter 

instead.

After the tests, we came to the conclusion that Geant4 does a good job in carrying out the processes it 

was designed to do, although some follow-up studies need to be done on the shape of the electromagnetic 

showers. One must be careful about how one obtains data though, and must make sure to not misinterpret 

Geant4's results.



Hadronic Cross Sections:
Some current and future neutrino experiments

might be interested in the cross sections for hadrons in
liquid  Argon.  We  ran  tests  with  high  statistics  on
Geant4, and plotted the results for pions, kaons, and
nucleons. Here are the results:

Clear Delta resonances can be seen in the  π± and K-
cross sections. In order to validate some of these tests,
we  did  the  same Cross  Section  tests  on  Carbon,  and
plotted experimental data on top of the graphs to see if
Geant4 simulations matched experimental data (Figures
2-7).  We  used  Carbon  because  there  exists  a  lot  of
experimental data for Carbon. We found that the Geant4
tests did not match the experimental data for Kaons (see
figures 4,5) on Carbon. The experimental data matched
the simulated test fairly well for pions and protons (see
figures 2,3, 6).We also  ran tests for different physics
lists: QGSP_BERT, QGSP_BIC, and QGSP_INCLXX,
however there was no difference between the results of
each list for this test.

Figure 1. The elastic, inelastic, and total cross sections
for pions (bottom), nucleons (top left), and kaons (top
right) as a function of the kinetic energy. Since there is
no  experimental  data  to  confirm  these  results,  the
integrity  of  these  results  might  be  based  on  the
comparisons of Carbon data to Carbon simulations. See
Figures 2-7. 

The way we ran these tests was to turn on a beam of
particles  at  the  materials.  We  looked  at  a  stepping
action, and whenever the particle underwent an elastic
process  (hadElastic)  or  inelastic  process
(neutronInelastic,  pi+Inelastic,  etc.)  we  incremented
the  number  of  particles  that  reacted  elastically  and
inelastically,  respectively.  Knowing  the  ratio  of
particles reacted to total particles for both inelastic and
elastic  interactions,  we  multiplied  this  ratio  by  a
constant to give us the cross section: 

                 XS=
N interacted

N total

⋅
A

Na⋅d⋅T
(eq. 1)

Where A is the atomic mass of element in the target,
Na  is Avogadro's number,  d and T are the density and
thickness  of  the  target.  The  total  XS is  simply  the
addition of the elastic and inelastic XS.
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Figure  2.  Comparison  of  Geant4  π+  Carbon  cross
sections with experimental data. The results
are consistent with each other. See bibliography for
citations.

Figure  4.  Comparison  of  Geant4  K+  Carbon  cross
sections  with  experimental  data.  The  results  aren't
consistent with each other, suggesting one should take
Geant4's  treatment of Kaons with a grain of salt. See
bibliography for citations.

Figure 6. Comparison of Geant4 proton Carbon cross
sections with experimental data. The few results we
have are consistent with each other. See bibliography
for citations.

Figure  3.  Comparison  of  Geant4  π-  Carbon  cross
sections  with  experimental  data.  The  results  are
consistent  with  each  other.  See  bibliography  for
citations.

Figure  5.  Comparison  of  Geant4  K- Carbon  cross
sections  with  experimental  data.  The  results  aren't
consistent with each other, suggesting one should take
Geant4's treatment of Kaons with a grain of salt.  See
bibliography for citations.

Figure 7. We didn't find experimental data for neutrons
on  Carbon  cross  sections,  but  please  enjoy  the  plot
nevertheless.
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Electromagnetic Showers:
We  also  looked  at  the  shape  of

electromagnetic  showers  produced  by  1  GeV
electrons and photons in lead, iron, and liquid argon.
We  recorded  both  the  radial  energy  profile  and
longitudinal  profile  to  find  the  Moliere  radius  of
lead, iron, and liquid argon, and the radiation length
of liquid argon.  For the Moliere radius, our results
were all higher than the literature values. 
   
      Simulated    Literature  [cm]
Pb:        1.95    1.6
Fe:        2.79   1.72
lAr:       14.34             10.1

To find  the  Moliere  Radius  of  Liquid  Argon,  we
plotted (see figure 8) the total energy deposited in
the detector as a function of radius from the central
axis  of  the  detector.  We  integrated  the  histogram
(figure 8) until the partial integral was 90% of the
total integral,  and then recorded the radius at that
point. The process was similar for lead and iron.

To find the radiation length for Argon, we looked at
the  longitudinal  energy  profile  for  many  events.
Figure 9 is  a graph of the  energy deposition as a
function of depth in the detector. The result can be
parameterized with the following equation: 

          dE/dt = E0 t
a e-bt        (eq. 2)

Where t = x/X0, a and b are free parameters, x is the
depth  into  the  detector,  and  X0   is  the  radiation
length.  We  fit  this  curve  to  the  histogram  for
gammas, and the resulting radiation length was 10.9
cm. This is below the literature value of 14 cm for
liquid argon.

The small difference in the shape of the gamma and
electron showers is due to the ionization the electron
does before it starts to shower. This deposits more
energy in  the beginning of  the shower  and leaves
less energy left over for the tail of the shower.    

This  is  not  the  first  time  somebody  has  tried  to
measure  the  Moliere  radius  of  liquid  Argon  using
Geant4  and  come  up  with  a  higher  answer.  It  is
important to realize however that the literature values
are  based  off  of  theoretical  predictions,  not  solely
data:  it  is  impossible  to  make  a  homogenous
calorimeter  out  of  lead.  Further  studies  need to be
done to understand the discrepancy in the simulation
values and the literature values.

Figure 8.  A histogram of the energy of many showers
deposited in the detector as a function of radius from the
central  axis.  Notice  the  log  scale  of  the  y  axis.  We
integrate this until we are at 90% of the total integral to
find the Molière radius, which was 14.34 cm.

Figure 9.  This is  a histogram of the energy of many
showers  deposited  into  the  detector  as  a  function  of
depth. It's shape is parameterised by (eq. 2), and from
this  longitudinal  parameterization  one  can  find  the
radiation length, which came out to be 10.9 cm. Only
the histogram of the gammas has a good fit because the
electrons leave some energy in the detector before they
shower (ionization energy), throwing off the balance of
the distribution.
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Step Limiter Comparison:
We  did  runs  with  5GeV  muons  in  liquid

Argon, tracking the energy deposition in small slices
of the detector. We expect landau curves because the
muon approximates a minimum ionizing particle and
according  to  Ereditato  et  al  (see  bibliography),  the
peak of the landau should be 2.1 Mev/cm. However,
the muon in Geant4 takes steps that are bigger than
the wire pitch of the TPC, which will lead to incorrect
readouts.  There  are  two  options  to  deal  with  this
problem: a step limiter or a readout geometry.

First,  we used the step limiter,  and the step
limiter  is  set  to  a  maximum  step  length  of  5mm.
Figure 10 measures the energy each muon deposited
in the small 3mm slice of detector, and so on for slices
of 6mm, 12mm, and 23mm. In the first plot, there is a

We made the same plots for maximum step lengths of
1mm, .5mm, .3mm, and .1mm. The four slice widths 
are still 3mm, 6mm, 12mm, and 23mm.

spike  at  0  because  a  lot  of  the  muons  passed  right
through the 3mm slice without taking a step inside the
slice. Therefore the energy deposited in that slice was
never recorded, and so a lot of muons were recorded as
leaving no energy in that slice of detector.

The  rest  of  the  plots  in  figure  10 show what
look  like  double  humped  landau-ish  distributions.  In
these slices, the step size is smaller than the slice width,
so each muon will take a step in the detector slice and
its  energy will  be  recorded,  so there is  no peak at  0.
However, many muons will  take their  last  step in the
slice  but  still  deposit  a  considerable  amount  of
unrecorded energy in that slice. This is why there are
two peaks,  and the first  peak shrinks into the  second
peak as the slice width becomes much larger than the
maximum step length.

Figure  10. The  small  slices  of  detector  are  made  to
represent  TPC  readouts.  Since  muons  approximate
minimum ionizing  particles,  we  expect  landau curves
(the red fits) with peaks at 2.1 MeV/cm. When the step
size  is  on  the  same  scale  as  the  wire  pitch,  the
distributions are not what we expect.
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Figure 11. When the maximum step length is about a
tenth  the  size  of  the  detector  slice,  the  resulting
distribution is  a  landau distribution with a  peak right
where we would expect, at 2.1 MeV/cm.

The curve becomes a nice  landau distribution
when the maximum step length is about one tenth of the
width  of  the  slice  of  detector.  So,  when  running  G4
simulations,  one should consider the max step length.
However, decreasing the max step length increases the
number of steps each particle has to take in the detector
volume,  so  there  can  be  a  large  computing  price  for
having small  step lengths.  This is  why the plots with
smaller  step lengths  have less  events  than the others.
Figure 12 is a graph of run time vs step size, (for the
same  number  of  events  in  each  run)  it  is  an  inverse
relationship (which is to be expected). Implementing a
step limiter has no added memory costs. In conclusion,
to  simulate  a  TPC where  the  wire  spacing  is  on  the
order  of  5mm, a  step size  of  .5  mm is  sufficient  for
accurate physics simulation.

Figure  12.  When  you  decrease  the  step  size,  each
particle has to take more steps until it exits the detector.
As a result, it takes longer to run for high statistics. The
timing results for the Voxelized Geometry and divided
hits layout are also on this plot.
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Divided Hits Comparison:
Another option is to divide the large steps into

smaller hits.  This is like making the detector out of
many smaller divisions, and when a large Geant4 step
is  made,  the  energy  deposited  for  the  step  is
distributed among the divisions that were passed. We
did the exact same tests for the divided hits layout as
we did for the step limiter, and the results were very
different.

At  the  largest  division  size  (figure  13),  the
energy  distributions  don't  show the  effects  that  the
large step limiter  shows,  yet  they do not  match the
landau  distributions  that  we  expect  from  a  muon.
However, as the division size decreases, as shown in
figure  14,  the  distributions  do  not  more  closely
resemble landau distributions. This is especially easy
to  see  in  the  6mm  slice  distribution  (the  second
column), where a small peak does not go away near
the base of the distribution. When the step limiter was
down  very  low,  all  of  the  distributions  closely
resembled landau distributions, with  good  χ2 values
and a peak at 2.1 MeV/cm. This is not at all true for
the smallest division sizes.

Figure 13. We do not expect the largest division size to
give us great readouts, and they don't, however as we
decreased the division size the readouts stayed the same.

The reason the distributions do not more closely
resemble  landau  distributions  is  that  by  dividing  the
total energy taken over the step, we are getting rid of all
of  the  small  fluctuations  that  make up the tail  of  the
landau. This keeps a landau curve from fitting nicely to
the  shape  of  the  distribution,  even  when the  division
size is very small.

Dividing the steps up into smaller hits takes up
a lot of memory (see Figure 15). At large division sizes,
Geant4 doesn't  take up very much memory, but when
the divisions get small, Geant4 takes up a huge amount
of  memory.  This  is  very dangerous;  especially  if  you
want to run a simulation job on the grid, using so much
memory  can  get  very  expensive.  And  as  shown  by
figure 14, despite using more memory and decreasing
the division size, the simulation does not do a better job
of  representing the actual  physics  in  the  detector.  All
taken  together,  using  the  step  limiter  seems  to  be  a
better choice to get the physics right in Geant4.
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Figure 14.  There seems to be no improvement in the
energy  distributions  across  a  small  slice  of  detector
when the division size is decreased.

As  the  memory  cost  gets  quite  large  for  smaller
divisions,  the  time  it  takes  to  run  does  not  get  very
large.  The  time  to  run  with  each  division  size  was
under .06 sec/event,  all  the way down to the smallest
division.  This  is  extremely  fast  compared  to  the  step
limiter, however the step limiter uses very little memory
in comparison. So there is a trade-off there, however the
results  from  the  landau  fits  of  the  Step-limiter
distributions combined with the enormous memory cost
of the divided hits layout makes an excellent case for
using a step limiter instead of a divided hits layout. Figure 15.  Although the divided hits  layout  ran very

quickly (see figure 12), it used up a lot of energy when
the  division  size  got  small.  For  comparison,  the  step
limiter used no additional memory.

Isaac Harris       8

Divided Steps

Step limiter



Voxelized Geometry Comparison:
The final option to match the step length to

the readout pitch is to use a segmented, or voxelized,
geometry.  This  involves  making the detector  out  of
little cubes. Geant4 is forced to step at each boundary,
and so using this geometry is similar to using a step
limiter.  Therefore, the results are not much different
than  the  step  limiter  results  above  (see  figure  11).
However, if you match the voxels to the readout pitch,
the result is a nice landau distribution (see figure 16).

Unfortunately, the wire planes of most liquid
argon TPC detectors are not so simple. The planes are
normally not at right angles to each other, and often
there  are  three  wire  planes,  so  it  is  impossible  to
perfectly  match  the  cubic  voxels  to  the  readouts
planes.  Therefore,  the  readout  geometry  acts
effectively as a step limiter, however with some extra
costs.  It  takes  longer  to  run  with  the  voxelized
geometry (.9 sec/event with .1 mm voxels) than with
the step  limiter  (see  figure  12).  It  costs  only  about
10MB of additional memory to run, so it is nowhere
near the memory costs of the divided step method; it
is about the same memory cost as the step limiter. 

Currently,  LarSoft  uses  a  voxelized  readout
geometry like the one I have described to match the
step length to the readout pitch. Since the step limiter
is  quite  simple  to  implement,  and  the  segmented
geometry takes considerably longer to run, it might be
beneficial to implement a step limiter in the LarSoft
Code and remove the voxelized geometry.

Figure  16. When  the  voxels  are  matched  to  the
readout slices, the distribution of energy depositions
closely resembles the landau curve we expect. Above
is a 5mm voxel fit exactly to a 5mm readout slice, and
the result  is  very nice.  However,  there  are  multiple
wire  readout  planes  in  most  liquid  Argon  TPC
detectors,  all  at  different  angles  (not  90  degrees),
making it impossible to perfectly match the voxels to
the  readout  planes.  The  rest  of  the  segmented
geometry data  is  not  shown because the segmented
geometry otherwise acts as a step limiter.
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Muon Separation in lAr (50 MeV):
One  of  the  difficulties  in  detector  physics  is

differentiating  between  oppositely  charged  particles,
especially in the absence of a strong magnetic or electric
field. We ran some studies to figure out how to separate
a  μ- from a  μ+.  First  of  all,  when going through the
detector,  the  muons  go  through  different  processes,
because the detector is made of matter, and antimatter
and matter interact differently in the material.

Processes                    μ-                       μ+          

Decay*          e-, νe , νμ         e+, νe , νμ
Lifetime         .58μs  2.2μs
Probability 25%  100%

Capture           νμ, γ ** none

Probability 75%
        *For μ-, this is decay in orbit
      **There can be more than one gamma       

When the  μ+ enters the target,  it  acts like a
minimum ionizing particle and ionizes the Argon. It
gets  stopped  and  decays  into  a  positron  and  two
neutrinos. As soon as these three particles are created
in the simulation, Geant4 puts them on the stack. We
used a Stacking Action to find the Kinetic energy of
the e+ and the time just as it is created, and put these
values into histograms.
 The  Kinetic  Energies  (figure  18)  of  the
positron  are  what  we  expect.  The  muon has  a  rest
mass  of  106  MeV,  and  that  energy  has  to  be  split
among  the  neutrinos  and  the  positron,  conserving
momentum. Since the neutrinos have such little mass,
the  positron  can't  have  too  much  energy  or  else
momentum conservation wouldn't  be possible.  This is
why  the  kinetic  energies  of  the  positrons  falls  off  at
around 50 MeV.  The timing (figure  17,  in  ns)  of  the
positron is also what we expect. It represents when the
muon decays. The histogram fits a very nice exponential
decay, the standard for decay rates, and has a mean of
2.2  μs,  which  is  the  literature  value  for  the  mean
lifetime of a muon.

The  μ-  decay is  a  little  different.  First  of  all,
every  negative  muon  that  entered  the  target  was
captured  by  an  Argon  atom.  There,  it  was  in  “orbit”
where it either decayed or was captured by the nucleus.
25% of the time it decayed. Similarly for the positive
muon's positron, we measured the timing and energy of
the e- that came from the decay of the negative muon.
The  Kinetic  Energies  (figure  20,  in  MeV)  are  as
expected,  similar  to  the  positive  muon,  and  the
difference in the shapes of the distributions is due to the

Figure 17. This is the time (in ns) from the beginning
of the event that the positron from muon decay was
put on the stack. This coincides with the timing of the
muon decay. The equation above is the classic decay
equation, where tμ+ is the mean lifetime of the μ+ in

liquid Ar.

Figure 18. This is the kinetic energy (in MeV) of the
positron just as it is created. Since two neutrinos have
to  have  the  leftover  energy  the  positron  takes  and
momentum has to be conserved (the muon decays at
rest), the positron cannot have too much of the energy
or else momentum will not be conserved.

decay in orbit. The Argon nucleus can have some of
the kinetic energy released in the muon decay, which
slightly  changes  the  shape  of  the  distribution.  The
times  (figure  19,  in  ns)  follow the  expected  decay
distribution but the mean is 0.58 μs instead of 2.2 μs.
This is because the negative muon is matter, and so it
has  weak  interactions  with  the  matter  around  it,
shortening  its  lifetime.  Suzuki  et  al.  measured  the
lifetime of the muon in liquid Argon, getting 0.54 μs,
with which our value of 0.58 μs is consistent.
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The  negative  muon  did  not  always  decay.  It  was
always captured by the atom and put into “orbit.” It
had two different possible processes: decay in orbit or
nuclear capture. 75% of the time the muon interacted
with  the  nucleus  and  created  a  muon  neutrino  and
gammas, turning a proton into a neutron, and possibly
expelling some protons and neutrons in the process.
We  looked  at  the  gammas  coming  out  to  see  the
timing of when the events happened and the energy of
the gammas. The timing was the same as the timing
for decay in orbit. The kinetic energy for the gammas
can be seen in figure 22.

We also made a plot to show the different atoms and
isotopes that resulted from the muon capture (in figure
21). The graph represents the relative probability of
the muon creating one atom from Argon over another.
Cl40  is  the  most  abundant,  and  therefore  the  most
likely. This is when just a proton becomes a neutron.
However, a large variety of elements and isotopes can
be produced from the energetic nuclear capture.

Figure 21. Whenever there was nuclear capture of a
muon, there was a chance for nucleons to be kicked
out of  the nucleus.  Geant4 always put  the  resulting
nucleus on the stack, where we were able to tell what
it was. So, we put the different nuclei into a histogram
to see what  the relative likelihood of creating other
nuclei was. A lot of the time Cl40 was formed, so the
proton-neutron conversion was all that happened, but
most of the time the process kicked out a few neutrons
and protons too.

Figure 19. This is the time (in ns) from the beginning of
the event that the electron from muon decay was put on
the stack. This coincides with the timing of the muon
decay. The equation above is the classic decay equation,
where tμ- is the mean lifetime of the μ- in liquid Ar.

Figure 20.  This is the kinetic energy (in MeV) of
the positron just as it is created. Since two neutrinos
have to have the leftover energy the positron takes
and  momentum  has  to  be  conserved  (the  muon
decays at rest), the positron cannot have too much
of  the  energy  or  else  momentum  will  not  be
conserved.

Figure  22.  This  is  the  Kinetic  energy  (in  MeV)  of
gammas emitted from nuclear capture. We didn't really
expect a specific pattern, but this gives a good general
idea of the energies of these gammas.
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When the muon was captured by the atom and put
into orbit, there was a sort of “flash” of some gammas
and some electrons. We looked at the energy spectrum
of  the  gammas  coming  out  (figure  23).  With  the
isolated peaks, it looks like spectral lines. This makes
perfect  sense,  because  the  muon's  electromagnetic
interaction with the atom should mimic an electron's
electromagnetic  interaction  with  the  atom,  and  that
would excite the atom which would emit light with
the spectral  energies.  The  timing for  these gammas
was  much  before  nuclear  capture  or  decay,  on  the
order of less than a nanosecond, right when the muon
enters the “orbit” of the atom. 

The goal  is  to  be able  to  look at  detector  tracks  and
know whether you are looking at a positive or negative
muon.  Since  all  the  μ-  were  captured  by  the  atom,
emitting some light and none of the  μ+ did that, if the
detector  could  detect  that  light  then  that  would  be  a
great  way  to  determine  the  charge  of  the  muon.
However, most of this light has very low energy, with a
mean of .16 MeV, and might be very hard to detect with
your detector. If they both decay, the μ- will decay into
an  electron,  while  the  μ+  will  decay  into  a  positron
which will annihilate. If you can find the annihilation,
then you know it was a  μ+. We plotted the energies of
the gammas from  e+ annihilation, and the energies of
the  resulting  gammas  is  extremely  consistent,  at  .52
MeV which is consistent with the literature value for the
rest  mass of an electron, .51 MeV (an electron and a
positron decay into two gammas, so each gamma should
have  .51  MeV).  This  low  energy  level  also  may  be
difficult to detect, but it is a very consistent value. To
see if the muon was captured by the nucleus, you could
look for the relatively high energy gamma (figure 22),
which could pair produce and maybe shower later in the
detector.  Or  you  could  look  for  the  absence  of  the
michel electron. Then it would be a μ-.

Figure  23.  This  is  the  energy  distribution  of  the
gammas emitted when the muon was captured by the
atom.  It  resembles  a spectral  plot,  which is  exactly
what it is. It would be a useful tool to identify when a
muon gets captured by an atom, however the energy
of the photons might be too low to be detectable (with
a mean of .16 Mev).

Figure 24. This is the energy of the gammas from the
positron electron annihilation. It is very consistent, so
it might be useful for detecting positrons from muon
decays, however the signal might be too weak to be
detected.
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Pions (50 MeV) in lAr:
We also looked at π+ and  π- in liquid Argon to

see what processes they underwent and what we could
do to separate  them by charge in  an experiment,  and
separate pions from muons. The table below shows the
different pion processes Geant4 does and the percent of
times they happen.

Processes                    π  -                       π  +          

Decay               μ-, νμ             μ+, νμ 

Lifetime              ?* 26 ns **
Probability  2%  95%

Inelastic              9% 5%
Probability

Capture 89% none
Probability

*For  π-,  there  were  not  enough  statistics  to  
     determine the lifetime

           **The measured π+ lifetime is consistent with 
    the literature value of 26 ns.

The  pions decay into  muons (although decay into  an
electron is possible but exceedingly rare) and we have a
pretty  good  understanding  of  how  muons  interact  in
liquid  Argon  (see  above).  However,  the  muon  might
leave  the  detector  before  it  gets  a  chance  to  decay.
However, if you see a pion decay, it is likely to be a
positive pion because they decay much more often than
negative pions. However,  to be sure it  was a positive
pion, you could look for the positron from the resulting
μ+ decay  or  the  two  gammas  from  the  e+  e-
annihilation. If there is a muon capture, then the decay
might have been from a negative pion. 

The difference in the Inelastic process for the pions is
that  π- will convert a proton into a neutron, while  π+
will  convert  a  neutron  into  a  proton.  It  doesn't  make
sense to distinguish between these two, so telling the
inelastic  processes  apart  from  each  other  is  rather
difficult.  In  both  inelastic  processes  and  the  Nuclear
Capture  of  the  π-,  lots  of  junk  (protons,  neutrons,
deuterons, etc.) is expelled from the nucleus, just like
the capture of μ-.

Therefore,  if  a  particle  comes into your  liquid Argon
TPC  and  creates  a  sort  of  hadronic  shower,  with
neutrons  and  protons  and  gammas,  it  would  be  very
difficult  to  tell  if  it  was a  μ-  or  a  pion.  If  a  particle
comes into your detector and decays, there are plenty

of  signs  to  tell  you  what  it  was.  If  soon  after  the
primary decay, there is a track and a secondary decay,
then you know it was a pion decaying into a muon. By
further  inspecting  the  Michel  electron  of  the
secondary decay and seeing if  it  annihilates  or  not,
you could distinguish between π- and π+. If soon after
the primary decay there is what appears to be a small
Hadronic shower, then a  μ- created that shower and
therefore the primary particle was a π-. And, if there is
a decay but no secondary decay or shower, then the
primary particle might have been a muon, see above
for distinguishing between muons. You can also use
timing  to  distinguish  between  muons  and  pions
because  pions  have  a  much  shorter  lifetime  than
muons.

Figure 25. This is the time (in ns) from the beginning 
of the event that the muon from pion decay was put 
on the stack. This coincides with the timing of the 
muon decay. The equation above is the classic decay 

equation, where tπ+ is the mean lifetime of the π+ in 
liquid Ar.
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